MATH 53, DISC 105 & 107

Please show **all** your work and write your answer on the answer line unless otherwise indicated by the problem. Please read the questions carefully. You have 20 minutes for the quiz.

Name:

ID number_

1. (8pts) The figure below shows two vectors **a** and **b** in \mathbb{R}^3 that are in the *xy*-plane. Suppose $\|\mathbf{a}\| = 3$ and $\|\mathbf{b}\| = 4$, and the angle between the two vectors in 30 degrees.

(a)
$$a \cdot b = \frac{\sqrt{3}}{2} 12$$

(b) The cross product $a \times b$ is in the direction of k

- (c) $||a \times b|| = 6$
- (d) The area of the triangle formed by a and b is 3

The figure below shows two vectors a and b in \mathbb{R}^3 that are in the *xy*-plane. Suppose that ||a|| = 3 and ||b|| = 2, and the angle between the two vectors in 120 degrees.

(a) The area of the parallelogram formed by a and b is $\frac{\sqrt{3}}{2}6$

(b) $a \times b$ is the same direction as -k

(c)
$$k \cdot (a \times b) = -\frac{\sqrt{3}}{2}6$$

(d) $(4i+2j) \cdot (a \times b) = 0$

- 2. (12pts) Mark the following statements true or false by writing true or false next to each statement. v and w are vectors, c is a scalar, and i, j, k are the standard unit vectors.
 - (a) $v \cdot (v \times w)$ is always zero true
 - (b) $(i \times j) \cdot k = i \cdot (j \times k) true$
 - (c) ||cv|| = c||v|| false
 - (d) ||v + w|| = ||v|| + ||w|| false
 - (e) If ||v w|| = 0 then v = w true
 - (f) If $||v \cdot w|| = 1$ then v and w are unit vectors false